Transverse vibrations of an axially accelerating viscoelastic string with geometric nonlinearity

نویسندگان

  • LI-QUN CHEN
  • JEAN W. ZU
  • JUN WU
  • XIAO-DONG YANG
چکیده

Two-to-one parametric resonance in transverse vibration of an axially accelerating viscoelastic string with geometric nonlinearity is investigated. The transport speed is assumed to be a constant mean speed with small harmonic variations. The nonlinear partial differential equation that governs transverse vibration of the string is derived from Newton’s second law. The method of multiple scales is applied directly to the equation, and the solvability condition of eliminating secular terms is established. Closed-form solutions for the amplitude of the vibration and the existence conditions of nontrivial steady-state response in two-to-one parametric resonance are obtained. Some numerical examples showing effects of the mean transport speed, the amplitude and the frequency of speed variation are presented. Lyapunov’s linearized stability theory is employed to analyze the stability of the trivial and nontrivial solutions for two-to-one parametric resonance. Some numerical examples highlighting the effects of the related parameters on the stability conditions are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions

In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...

متن کامل

Transverse nonlinear dynamics of axially accelerating viscoelastic beams based on 4-term Galerkin truncation

This paper investigates bifurcation and chaos in transverse motion of axially accelerating viscoelastic beams. The Kelvin model is used to describe the viscoelastic property of the beam material, and the Lagrangian strain is used to account for geometric nonlinearity due to small but finite stretching of the beam. The transverse motion is governed by a nonlinear partial-differential equation. T...

متن کامل

Asymptotic analysis on nonlinear vibration of axially accelerating viscoelastic strings with the standard linear solid model

Nonlinear parametric vibration of axially accelerating viscoelastic strings is investigated via an approximate analytical approach. The standard linear solid model using the material time derivative is employed to describe the string viscoelastic behaviors. A coordinate transformation is introduced to derive Mote’s model of transverse motion from the governing equation of the stationary string....

متن کامل

A numerical method for simulating transverse vibrations of an axially moving string

A modified finite difference method is presented to simulate transverse vibrations of an axially moving string. By discretizing the governing equation and the stress–strain relation at different frictional knots, two linear sparse finite difference equations are obtained, which can be computed alternatively. The numerical method makes the nonlinear model easier to deal with and of small truncat...

متن کامل

Asymptotic Approximations of the Solution for a Traveling String under Boundary Damping

Transversal vibrations of an axially moving string under boundary damping are investigated. Mathematically, it represents a homogenous linear partial differential equation subject to nonhomogeneous boundary conditions. The string is moving with a relatively (low) constant speed, which is considered to be positive.  The string is kept fixed at the first end, while the other end is tied with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003